La modélisation en étoile

Objectifs

Ce cours, construit autour de nombreux cas pratiques, vous donnera une idée précise de la démarche de modélisation en étoile dans le cadre du projet Data Warehouse. Vous verrez pourquoi elle est l'expression même du besoin de la maîtrise d'ouvrage et comment elle permet de faire converger la vision des opérationnels, des analystes et des pilotes sur les activités de l'entreprise.

Participants

Maîtres d'ouvrage et maîtres d'oeuvre, responsables des systèmes décisionnels, responsables informatiques, responsables des études, architectes de systèmes d'information, chefs de projets.

Pré-requis

Connaissances de base de l'analyse décisionnelle et des SGBD relationnelles.

Moyens pédagogiques

1 poste par participant - 1 Vidéo projecteur - Support de cours fourni à chaque participant – Formation présentielle

Durée

3 jours

Les sessions inter-entreprises

Date Session
Du 03/04/2018
Au 05/04/2018
Paris
Formation standard
Du 03/04/2018
Au 05/04/2018
Caen
Formation standard
Du 03/04/2018
Au 05/04/2018
Lyon
Formation standard
Du 03/04/2018
Au 05/04/2018
Rennes
Formation standard
Du 03/04/2018
Au 05/04/2018
Lille
Formation standard
Du 03/04/2018
Au 05/04/2018
Rouen
Formation standard
Du 25/06/2018
Au 27/06/2018
Paris
Formation standard
Du 25/06/2018
Au 27/06/2018
Caen
Formation standard
Du 25/06/2018
Au 27/06/2018
Lyon
Formation standard
Du 25/06/2018
Au 27/06/2018
Rennes
Formation standard
Du 25/06/2018
Au 27/06/2018
Lille
Formation standard
Du 25/06/2018
Au 27/06/2018
Rouen
Formation standard
Ce plan de cours est établi à titre indicatif. Son contenu peut être adapté à chaque formation Télécharger la fiche pdfDemander un devis

Code

MOD-ETOILE

Description détaillée

Programme.
 
Introduction et rappels
 Qu'est-ce qu'un système d'information décisionnel ?
 Evolution des exigences de décision dans le contexte actuel.
 Infocentres, SIAD, EIS, Data Warehouse, définition et positionnement.
 Comprendre la finalité de l'approche Data Warehouse.

Les architectures en réponse aux besoins décisionnels
 Les composants principaux, Data Warehouse, ODS ou "staging area", datamarts.
 Les architectures proposées par Kimball et Inmon. Avantages et inconvénients.
 Positionnement du modèle en étoile dans le Data Warehouse selon l'architecture.
 Les phases du cycle de vie d'un Data Warehouse.
 Les critères de qualité d'un Data Warehouse.
 La notion de métadonnée, de référentiel.

Principes et définitions de base sur la modélisation en étoile
 Rappels sur la modélisation des bases de données opérationnelles.
 Différences entre OLTP et OLAP.
 Entités, attributs, cardinalités, formes normales.
 Le principe de la dénormalisation pour concevoir un modèle en étoile.
 Comprendre les notions de fait, dimension et axe d'analyse.
 Les alternatives de modélisation : modèle en flocon, en galaxie.
 Les règles et bonnes pratiques de modélisation en étoile. Proposition alternative de Kortink et Moody.

Conception du modèle en étoile
 Organisation et synthèse des interviews utilisateur pour le recueil du besoin.
 Compréhension et identification des processus métiers à modéliser.
 Choix des dimensions d'analyse.
 Création de hiérarchies dans les dimensions.
 Identification des mesures et croisements avec les dimensions.
 Définition de la granularité de l'analyse.
 Définition des règles d'agrégation.
 Utilisation d'outils de modélisation.

Optimisation fonctionnelle du modèle en étoile
 Gestion de l'évolution des référentiels et du changement des nomenclatures.
 Gestion des dimensions à évolution lente et rapide.
 Les clés de substitution.
 Gestion de la qualité, fiabilité des données.
 Gestion du contexte non renseigné ou inconnu.
 Les dimensions dégénérées.

Replacer la modélisation dans le cadre du projet décisionnel
 Présentation de la méthode Kimball et Inmon pour l'organisation du projet.
 Les acteurs et livrables du projet.
 Recueil des besoins métier. Formalisation des exigences techniques et d'organisation.
 Identification des priorités et du périmètre pilote.
 Modélisation des informations.
 Choix de l'infrastructure. Implémentation et recette.
 Déploiement et maintenance du modèle.
 Gestion des historiques.

Optimisation physique du modèle
 Gestion de la performance des requêtes.
 Estimation de l'espace disque requis pour le modèle.
 Limitation de la taille occupée par une dimension.
 Agrégation directe de certains éléments dans les tables.
 Dimensions techniques pour assurer la traçabilité des faits.

Alimentation du modèle en étoile
 Contraintes des systèmes opérationnels sources.
 Rôle des ODS dans l'alimentation.
 L'organisation des traitements dans la DSA (Data Staging Area).
 Les différents types d'alimentation (delta, stock, complète).
 Les étapes, les règles et les prérequis de l'alimentation.
 Gestion des rejets.
 Gestion des sources différentes pour l'alimentation d'une dimension ou d'un fait.
 ETL, les solutions d'alimentation disponibles sur le marché.

Restitution des informations d'un modèle en étoile
 Les différents types d'outils au service de la restitution.
 Le marché des outils de restitution.
 Optimisation du modèle pour l'exploration des données.
 Optimisation des index.
 Utilisation du partitionnement des tables.

Conclusion
 Ce qu'il faut retenir.
 Les pièges à éviter.
 Pour aller plus loin.

Les dernières places disponibles

Aucune annonce pour le moment
Une erreur est survenue
Une erreur est survenue, l'administrateur a été contacté
Revenir à la première page